博客
关于我
输入两个正整数m 和n,求其最大公约数和最小公倍数 (Java经典编程案例)
阅读量:733 次
发布时间:2019-03-22

本文共 1031 字,大约阅读时间需要 3 分钟。

输入两个正整数m和n,求其最大公约数和最小公倍数

在编程中,求两个正整数的最大公约数(GCD)和最小公倍数(LCM)是一个常见的问题。本文将详细介绍一种高效的求解方法。

思路分析

最大公约数可以通过辗转相除法来求解。具体步骤如下:

  • 在循环中,只要除数不等于0,继续执行。
  • 将较大的数除以较小的数,取余数。
  • 将余数作为新的较小的数,将原来的较小的数作为新的较大的数。
  • 重复上述步骤,直到较小的数为0,此时较大的数即为最大公约数。
  • 最小公倍数则可以通过公式:最小公倍数 = 两个数的乘积 / 最大公约数来计算。
  • 代码示例

    以下是实现上述方法的Java代码:

    public class Example {  
    public static void main(String[] args) {
    Scanner scanner = new Scanner(System.in);
    System.out.print("请输入正整数m的值:");
    int m = scanner.nextInt();
    System.out.print("请输入正整数n的值:");
    int n = scanner.nextLong();
    int a = division(m, n);
    int b = (m / a) * n; // 可以直接使用 m * n / a 来计算
    System.out.println(m + "和" + n + "的最大公约数为:" + a + ",最小公倍数为:" + b);
    }
    public int division(int x, int y) {
    int temp;
    while (y != 0) {
    temp = x % y;
    x = y;
    y = temp;
    }
    return x;
    }
    }

    执行结果

    运行上述代码并输入两个正整数,程序将输出它们的最大公约数和最小公倍数。

    总结

    通过上述方法和代码,我们可以快速且高效地求解两个正整数的最大公约数和最小公倍数。这种方法不仅适用于编程,还可以在数学计算中得到实际应用。

    转载地址:http://vezwk.baihongyu.com/

    你可能感兴趣的文章
    Netty+Protostuff实现单机压测秒级接收35万个对象实践经验分享
    查看>>
    Netty+SpringBoot+FastDFS+Html5实现聊天App详解(一)
    查看>>
    netty--helloword程序
    查看>>
    netty2---服务端和客户端
    查看>>
    【Flink】Flink 2023 Flink易用性和稳定性在Shopee的优化-视频笔记
    查看>>
    Netty5.x 和3.x、4.x的区别及注意事项(官方翻译)
    查看>>
    netty——bytebuf的创建、内存分配与池化、组成、扩容规则、写入读取、内存回收、零拷贝
    查看>>
    netty——Channl的常用方法、ChannelFuture、CloseFuture
    查看>>
    netty——EventLoop概念、处理普通任务定时任务、处理io事件、EventLoopGroup
    查看>>
    netty——Future和Promise的使用 线程间的通信
    查看>>
    netty——Handler和pipeline
    查看>>
    Vue输出HTML
    查看>>
    netty——黏包半包的解决方案、滑动窗口的概念
    查看>>
    Netty中Http客户端、服务端的编解码器
    查看>>
    Netty中使用WebSocket实现服务端与客户端的长连接通信发送消息
    查看>>
    Netty中实现多客户端连接与通信-以实现聊天室群聊功能为例(附代码下载)
    查看>>
    Netty中的组件是怎么交互的?
    查看>>
    Netty中集成Protobuf实现Java对象数据传递
    查看>>
    netty之 定长数据流处理数据粘包问题
    查看>>
    Netty事件注册机制深入解析
    查看>>